configuración electrónica
es la manera en la cual los electrones se estructuran o se modifican en un átomo, molécula o en otra estructura físico-química, de acuerdo con el modelo de capas electrónico, en el cual las funciones de ondas del sistema se expresa como un producto de orbitales antisimetrizadas.[1] [2] Cualquier conjunto de electrones en un mismo estado cuántico deben cumplir el principio de exclusión de Pauli. Por ser fermiones (partículas de espín semientero) el principio de exclusión de Pauli nos dice que esto es función de onda total (conjunto de electrones) debe ser antisimétrica.[3] Por lo tanto, en el momento en que un estado cuántico es ocupado por un electrón, el siguiente electrón debe ocupar un estado cuántico diferente.
Los Números Cuánticos
En el contexto de la mecánica cuántica, en la descripción de un átomo se sustituye el concepto de órbita por el de orbital atómico. Un orbital atómico es la región del espacio alrededor del núcleo en el que la probabilidad de encontrar un electrón es máxima.
Número cuántico principal (n). |
La solución matemática de la ecuación de Schrödinger precisa de tres números cuánticos. Cada trío de valores de estos números describe un orbital.
Número cuántico principal (n): puede tomar valores enteros (1, 2, 3, 4, 5, 6, 7) y coincide con el mismo número cuántico introducido por Bohr. Está relacionado con la distancia promedio del electrón al núcleo en un determinado orbital y, por tanto, con el tamaño de este e indica el nivel de energía.
Número cuántico secundario (l): Los niveles de energía, identificados con el número cuántico principal (n), poseen subniveles, los cuales se asocian, además, a la forma del orbital, y son identificados por el número cuántico secundario (l). Entonces, los valores del número cuántico secundario dependen del número cuántico principal "n".
Así, la cantidad de subniveles de energía que posea cada nivel principal está dada por la fórmula n – 1 (el valor del número cuántico principal menos uno).
Este número cuántico secundario (l) nos indica en que subnivel se encuentra el electrón, y toma valores desde 0 hasta (n - 1), recordando que n es el valor del número cuántico principal. Así, para cada nivel n, el número cuántico secundario (l) será:
l = 0, 1, 2, 3,…, n-1.
Ejemplo:
Si n = 1 (n – 1 = 0), entonces l = 0 (en el nivel de energía 1 no hay subniveles de energía, y para efectos de comprensión se considera este nivel 1 como subnivel 0)
Si n = 2 (n -1 = 1), entonces l = 0, 1. El nivel de energía 2 posee dos subniveles, identificados como 0 y 1
Si n = 3 (n – 1 = 2), entonces l = 0, 1, 2. El nivel de energía 3 posee tres subniveles, identificados como 0, 1 y 2
Si n = 4 (n – 1 = 3), entonces l = 0, 1, 2, 3. El nivel de energía 4 posee cuatro subniveles identificados como 0, 1, 2 y 3
Si n = 5 (n – 1 = 4), entonces l = 0, 1, 2, 3, 4. El nivel de energía 5 posee cinco subniveles identificados como 0, 1, 2, 3 y 4
También para efectos de comprensión, la comunidad científica ha aceptado que los números que representan los subniveles (0, 1, 2, y 3) sean reemplazados por las letras s, p, d y f, respectivamente, para representar los distintos tipos de orbitales.
Estas letras se obtiene de la inicial de las palabras sharp (s), principal (p), difuso (d) y fundamental (f).
Cada subnivel, a su vez, posee distinta cantidad de orbitales, lo cual veremos más adelante.
Ahora, con respecto a la forma del orbital de estos subniveles, el número cuántico secundario (o azimutal) determina la excentricidad de la órbita: cuanto mayor sea este número, más excéntrica será la órbita; es decir, será más aplanada la elipse que recorre el electrón.
Así, en el nivel 1 (o capa K) el valor del nivel (identificado como subnivel 0) es cero (no hay excentricidad) y su órbita es circular.
Cada vez que aumenta el valor del número cuántico secundario (o azimutal) aumenta la excentricidad de la órbita, como se demuestra en el siguiente gráfico:
Número cuántico magnético (ml): puede tener todos los valores desde – l hasta + l pasando por cero. Describe la orientación espacial del orbital e indica el número de orbitales presentes en un subnivel determinado.
Para explicar determinadas características de los espectros de emisión se consideró que los electrones podían girar en torno a un eje propio, bien en el sentido de las agujas del reloj o en el sentido contrario. Para caracterizar esta doble posibilidad se introdujo el número cuántico de espín (ms) que toma los valores de + ½ o – ½..
Cuadro de las diagonales, mecanismo para distribuir electrones en sus diferentes niveles de energía. |
• Principio de Incertidumbre de Heisenberg: “Es imposible determinar simultáneamente la posición exacta y el momento exacto del electrón”
. • Principio de Exclusión de Pauli: “Dos electrones del mismo átomo no pueden tener los mismos números cuánticos idénticos y por lo tanto un orbital no puede tener más de dos electrones”.
Tipos de configuración electrónica
Para gráfica la configuración electrónica existen cuatro modalidades, con mayor o menor complejidad de comprensión, que son:Configuración estándar
Se representa la configuración electrónica que se obtiene usando el cuadro de las diagonales (una de sus formas gráficas se muestra en la imagen de la derecha).
Es importante recordar que los orbitales se van llenando en el orden en que aparecen, siguiendo esas diagonales, empezando siempre por el 1s.
Aplicando el mencionado cuadro de las diagonales la configuración electrónica estándar, para cualquier átomo, es la siguiente:
1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p6 7s2 5f14 6d10 7p6
Más adelante explicaremos cómo se llega este enjambre de números y letras que perturba inicialmente, pero que es de una simpleza sorprendente.
Configuración condensada
Los niveles que aparecen llenos en la configuración estándar se pueden representar con un gas noble (elemento del grupo VIII A, Tabla Periódica de los elementos), donde el número atómico del gas coincida con el número de electrones que llenaron el último nivel.
Los gases nobles son He, Ne, Ar, Kr, Xe y Rn.
No hay comentarios:
Publicar un comentario